Fast-R-CNN/main.py

204 lines
8.5 KiB
Python
Raw Normal View History

2024-11-13 05:46:39 +00:00
import math
import copy
import time
import shutil
import os
import random
os.environ['TORCH_HOME'] = './ckpts'
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import cv2
from dataset import get_pascal_voc2007_data, pascal_voc2007_loader, idx_to_class
from model import FastRCNN
from utils import coord_trans, data_visualizer
def parse_args():
parser = argparse.ArgumentParser('Faster R-CNN', add_help=False)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--lr_decay', default=1.0, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--overfit_small_data', default=False, action='store_true')
parser.add_argument('--output_dir', default='./exp/fast_rcnn')
args = parser.parse_args()
return args
def main(args):
torch.manual_seed(0)
torch.cuda.manual_seed(0)
random.seed(0)
if args.overfit_small_data:
args.output_dir = args.output_dir + "_overfit_small"
os.makedirs(args.output_dir, exist_ok=True)
# build dataset & dataloader
train_dataset = get_pascal_voc2007_data('./data/VOCtrainval_06-Nov-2007/', 'train')
val_dataset = get_pascal_voc2007_data('./data/VOCtrainval_06-Nov-2007/', 'val')
train_loader = pascal_voc2007_loader(train_dataset, args.batch_size, shuffle=True, num_workers=args.num_workers,
proposal_path='data/VOCtrainval_06-Nov-2007/VOCdevkit/VOC2007/Proposals')
val_loader = pascal_voc2007_loader(val_dataset, args.batch_size, num_workers=args.num_workers,
proposal_path='data/VOCtrainval_06-Nov-2007/VOCdevkit/VOC2007/Proposals')
if args.overfit_small_data:
num_sample = 10
small_dataset = torch.utils.data.Subset(
train_dataset,
torch.linspace(0, len(train_dataset)-1, steps=num_sample).long()
)
small_train_loader = pascal_voc2007_loader(small_dataset, 10,
proposal_path='data/VOCtrainval_06-Nov-2007/VOCdevkit/VOC2007/Proposals')
val_dataset = small_dataset
train_loader = small_train_loader
val_loader = small_train_loader
model = FastRCNN()
model.cuda()
# build optimizer
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, model.parameters()),
args.lr
)
lr_scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lambda epoch: args.lr_decay ** epoch
)
# load ckpt
ckpt_path = os.path.join(args.output_dir, 'checkpoint.pth')
start_epoch = 0
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_sched'])
if start_epoch < args.epochs:
train(args, model, train_loader, optimizer, lr_scheduler, start_epoch)
inference(args, model, val_loader, val_dataset, visualize=args.overfit_small_data)
def train(args, model, train_loader, optimizer, lr_scheduler, start_epoch):
loss_history = []
model.train()
for i in range(start_epoch, args.epochs):
start_t = time.time()
for iter_num, data_batch in enumerate(train_loader):
images, boxes, boxes_batch_ids, proposals, proposal_batch_ids, w_batch, h_batch, _ = data_batch
resized_boxes = coord_trans(boxes, boxes_batch_ids, w_batch, h_batch, mode='p2a')
resized_proposals = coord_trans(proposals, proposal_batch_ids, w_batch, h_batch, mode='p2a')
images = images.to(dtype=torch.float, device='cuda')
resized_boxes = resized_boxes.to(dtype=torch.float, device='cuda')
boxes_batch_ids = boxes_batch_ids.cuda()
resized_proposals = resized_proposals.to(dtype=torch.float, device='cuda')
proposal_batch_ids = proposal_batch_ids.cuda()
loss = model(images, resized_boxes, boxes_batch_ids, resized_proposals, proposal_batch_ids)
optimizer.zero_grad()
loss.backward()
loss_history.append(loss.item())
optimizer.step()
if iter_num % 50 == 0:
print('(Iter {} / {}) loss: {:.4f}'.format(iter_num, len(train_loader), np.mean(loss_history[-50:])))
end_t = time.time()
print('(Epoch {} / {}) loss: {:.4f}, time per epoch: {:.1f}s'.format(
i, args.epochs, np.mean(loss_history[-len(train_loader):]), end_t-start_t))
lr_scheduler.step()
checkpoint = {
'epoch': i + 1,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict()}
torch.save(checkpoint, os.path.join(args.output_dir, 'checkpoint.pth'))
# plot the training losses
fig, ax = plt.subplots()
ax.plot(loss_history)
ax.set_xlabel('Iteration')
ax.set_ylabel('Loss')
ax.set_title('Training loss history')
fig.savefig(os.path.join(args.output_dir, 'training_loss.png'))
plt.close()
def inference(args, model, val_loader, dataset, thresh=0.5, nms_thresh=0.5, visualize=False):
model.eval()
start_t = time.time()
if args.output_dir is not None:
det_dir = os.path.join(args.output_dir, 'mAP_input/detection-results')
gt_dir = os.path.join(args.output_dir, 'mAP_input/ground-truth')
vis_dir = os.path.join(args.output_dir, 'visualize')
os.makedirs(det_dir, exist_ok=True)
os.makedirs(gt_dir, exist_ok=True)
os.makedirs(vis_dir, exist_ok=True)
for iter_num, data_batch in enumerate(val_loader):
images, boxes, boxes_batch_ids, proposals, proposal_batch_ids, w_batch, h_batch, img_ids = data_batch
images = images.to(dtype=torch.float, device='cuda')
resized_proposals = coord_trans(proposals, proposal_batch_ids, w_batch, h_batch, mode='p2a')
resized_proposals = resized_proposals.to(dtype=torch.float, device='cuda')
proposal_batch_ids = proposal_batch_ids.cuda()
with torch.no_grad():
final_proposals, final_conf_scores, final_class = \
model.inference(images, resized_proposals, proposal_batch_ids, thresh=thresh, nms_thresh=nms_thresh)
# clamp on the proposal coordinates
batch_size = len(images)
for idx in range(batch_size):
torch.clamp_(final_proposals[idx][:, 0::2], min=0, max=w_batch[idx])
torch.clamp_(final_proposals[idx][:, 1::2], min=0, max=h_batch[idx])
# visualization
# get the original image
# hack to get the original image so we don't have to load from local again...
i = batch_size*iter_num + idx
img, _ = dataset.__getitem__(i)
box_per_img = boxes[boxes_batch_ids==idx]
final_all = torch.cat((final_proposals[idx], \
final_class[idx].float(), final_conf_scores[idx]), dim=-1).cpu()
final_batch_idx = torch.LongTensor([idx] * final_all.shape[0])
resized_final_proposals = coord_trans(final_all, final_batch_idx, w_batch, h_batch)
# write results to file for evaluation (use mAP API https://github.com/Cartucho/mAP for now...)
if args.output_dir is not None:
file_name = img_ids[idx].replace('.jpg', '.txt')
with open(os.path.join(det_dir, file_name), 'w') as f_det, \
open(os.path.join(gt_dir, file_name), 'w') as f_gt:
print('{}: {} GT bboxes and {} proposals'.format(img_ids[idx], len(box_per_img), resized_final_proposals.shape[0]))
for b in box_per_img:
f_gt.write('{} {:.2f} {:.2f} {:.2f} {:.2f}\n'.format(idx_to_class[b[4].item()], b[0], b[1], b[2], b[3]))
for b in resized_final_proposals:
f_det.write('{} {:.6f} {:.2f} {:.2f} {:.2f} {:.2f}\n'.format(idx_to_class[b[4].item()], b[5], b[0], b[1], b[2], b[3]))
if visualize:
data_visualizer(img, idx_to_class, os.path.join(vis_dir, img_ids[idx]), box_per_img, resized_final_proposals)
end_t = time.time()
print('Total inference time: {:.1f}s'.format(end_t-start_t))
if __name__=='__main__':
args = parse_args()
main(args)