forward completed

This commit is contained in:
ClF3 2024-11-18 23:46:49 +08:00
parent 16b08f040b
commit 2bd4f09891
2 changed files with 84 additions and 16 deletions

View File

@ -71,7 +71,18 @@ class FastRCNN(nn.Module):
# hidden_dim -> hidden_dim. # # hidden_dim -> hidden_dim. #
############################################################################## ##############################################################################
# Replace "pass" statement with your code # Replace "pass" statement with your code
pass self.cls_head = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.Dropout(drop_ratio),
nn.ReLU(),
nn.Linear(hidden_dim, num_classes+1)
)
self.bbox_head = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.Dropout(drop_ratio),
nn.ReLU(),
nn.Linear(hidden_dim, 4)
)
############################################################################## ##############################################################################
# END OF YOUR CODE # # END OF YOUR CODE #
############################################################################## ##############################################################################
@ -118,23 +129,51 @@ class FastRCNN(nn.Module):
B, _, H, W = images.shape B, _, H, W = images.shape
# extract image feature # extract image feature
pass feat=self.feat_extractor.forward(images)
# print(feat.shape)
# perform RoI Pool & mean pool # perform RoI Pool & mean pool
pass feat=torchvision.ops.roi_pool(feat, torch.cat((proposal_batch_ids.unsqueeze(1), proposals),dim=1), output_size=(self.roi_output_w, self.roi_output_h))
# print(feat.shape)
feat=feat.mean(dim=[2,3])
# print(feat.shape)
# forward heads, get predicted cls scores & offsets # forward heads, get predicted cls scores & offsets
pass cls_scores=self.cls_head(feat)
bbox_offsets=self.bbox_head(feat)
# print(cls_scores.shape, bbox_offsets.shape)
# assign targets with proposals # assign targets with proposals
pos_masks, neg_masks, GT_labels, GT_bboxes = [], [], [], [] pos_masks, neg_masks, GT_labels, GT_bboxes = [], [], [], []
for img_idx in range(B): for img_idx in range(B):
# get the positive/negative proposals and corresponding # get the positive/negative proposals and corresponding
# GT box & class label of this image # GT box & class label of this image
pass pos_mask, neg_mask, GT_label, GT_bbox = assign_label(proposals[proposal_batch_ids==img_idx,:], bboxes[bbox_batch_ids==img_idx,:], self.num_classes)
# print(pos_mask.shape, neg_mask.shape, GT_label.shape, GT_bbox.shape)
pos_masks.append(pos_mask)
neg_masks.append(neg_mask)
GT_labels.append(GT_label)
GT_bboxes.append(GT_bbox)
# compute loss # compute loss
pass cls_loss = 0
img_idx = 0
for GT_label in GT_labels:
# print(cls_scores.shape, GT_label.shape)
cls_loss += ClsScoreRegression(cls_scores[proposal_batch_ids==img_idx,:], GT_label, B)
img_idx += 1
bbox_loss = 0
img_idx=0
for GT_bbox in GT_bboxes:
bbox_offsets_cur=bbox_offsets[proposal_batch_ids==img_idx,:]
pos_box_offsets = bbox_offsets_cur[pos_masks[img_idx],:]
proposals_cur = proposals[proposal_batch_ids==img_idx,:]
pos_proposals = proposals_cur[pos_masks[img_idx],:]
# print(pos_box_offsets.shape, GT_bbox.shape)
bbox_loss += BboxRegression(pos_box_offsets, compute_offsets(pos_proposals, GT_bbox), B)
img_idx += 1
total_loss=cls_loss+bbox_loss
############################################################################## ##############################################################################
# END OF YOUR CODE # # END OF YOUR CODE #
@ -183,16 +222,19 @@ class FastRCNN(nn.Module):
B = images.shape[0] B = images.shape[0]
# extract image feature # extract image feature
pass feat = self.feat_extractor.forward(images)
# perform RoI Pool & mean pool # perform RoI Pool & mean pool
pass feat=torchvision.ops.roi_pool(feat, torch.cat((proposal_batch_ids.unsqueeze(1), proposals),dim=1), output_size=(self.roi_output_w, self.roi_output_h))
feat = feat.mean(dim=[2, 3])
# forward heads, get predicted cls scores & offsets # forward heads, get predicted cls scores & offsets
pass cls_scores = self.cls_head(feat)
print(cls_scores.shape)
bbox_offsets = self.bbox_head(feat)
print(bbox_offsets.shape)
# get predicted boxes & class label & confidence probability # get predicted boxes & class label & confidence probability
pass proposals = generate_proposal(proposals, bbox_offsets)
final_proposals = [] final_proposals = []
final_conf_probs = [] final_conf_probs = []
@ -201,10 +243,23 @@ class FastRCNN(nn.Module):
for img_idx in range(B): for img_idx in range(B):
# filter by threshold # filter by threshold
pass cls_prob = torch.softmax(cls_scores[proposal_batch_ids == img_idx], dim=1)
print(cls_prob.shape)
pos_mask = cls_prob[:, 1] > thresh
print(pos_mask.shape)
proposals_img = proposals[proposal_batch_ids == img_idx][pos_mask]
print(proposals_img.shape)
print(cls_prob.shape)
final_proposals.append(proposals_img)
final_conf_probs.append(cls_prob[pos_mask, 1].unsqueeze(1))
# nms # nms
pass keep = torchvision.ops.nms(proposals_img, cls_prob[:, 1], nms_thresh)
proposals_img = proposals_img[keep]
cls_prob = cls_prob[keep]
############################################################################## ##############################################################################
# END OF YOUR CODE # # END OF YOUR CODE #

View File

@ -142,12 +142,22 @@ def compute_iou(anchors, bboxes):
Outputs: Outputs:
- iou: IoU matrix of shape (M, N) - iou: IoU matrix of shape (M, N)
""" """
iou = None iou = torch.zeros((anchors.shape[0], bboxes.shape[0]))
iou = iou.to(anchors.device)
############################################################################## ##############################################################################
# TODO: Given anchors and gt bboxes, # # TODO: Given anchors and gt bboxes, #
# compute the iou between each anchor and gt bbox. # # compute the iou between each anchor and gt bbox. #
############################################################################## ##############################################################################
pass for i in range(anchors.shape[0]):
for j in range(bboxes.shape[0]):
x1 = max(anchors[i][0], bboxes[j][0])
y1 = max(anchors[i][1], bboxes[j][1])
x2 = min(anchors[i][2], bboxes[j][2])
y2 = min(anchors[i][3], bboxes[j][3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (anchors[i][2] - anchors[i][0]) * (anchors[i][3] - anchors[i][1])
area2 = (bboxes[j][2] - bboxes[j][0]) * (bboxes[j][3] - bboxes[j][1])
iou[i][j] = inter / (area1 + area2 - inter)
############################################################################## ##############################################################################
# END OF YOUR CODE # # END OF YOUR CODE #
@ -206,7 +216,10 @@ def generate_proposal(anchors, offsets):
# compute the proposal coordinates using the transformation formulas above. # # compute the proposal coordinates using the transformation formulas above. #
############################################################################## ##############################################################################
# Replace "pass" statement with your code # Replace "pass" statement with your code
pass proposals = torch.zeros_like(anchors)
proposals[:, :2] = anchors[:, :2] + offsets[:, :2] * (anchors[:, 2:4] - anchors[:, :2])
proposals[:, 2:4] = anchors[:, 2:4] * torch.exp(offsets[:, 2:4])
############################################################################## ##############################################################################
# END OF YOUR CODE # # END OF YOUR CODE #