import glob import json import os import shutil import operator import sys import argparse import math import numpy as np MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge) parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, help="the saving directory to compute mAP") parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true") parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true") parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true") # argparse receiving list of classes to be ignored (e.g., python main.py --ignore person book) parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.") # argparse receiving list of classes with specific IoU (e.g., python main.py --set-class-iou person 0.7) parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.") args = parser.parse_args() ''' 0,0 ------> x (width) | | (Left,Top) | *_________ | | | | | y |_________| (height) * (Right,Bottom) ''' # if there are no classes to ignore then replace None by empty list if args.ignore is None: args.ignore = [] specific_iou_flagged = False if args.set_class_iou is not None: specific_iou_flagged = True # make sure that the cwd() is the location of the python script (so that every path makes sense) os.chdir(os.path.dirname(os.path.abspath(__file__))) GT_PATH = os.path.join(args.path, 'mAP_input', 'ground-truth') DR_PATH = os.path.join(args.path, 'mAP_input', 'detection-results') # if there are no images then no animation can be shown IMG_PATH = os.path.join(args.path, 'mAP_input', 'images-optional') if os.path.exists(IMG_PATH): for dirpath, dirnames, files in os.walk(IMG_PATH): if not files: # no image files found args.no_animation = True else: args.no_animation = True # try to import OpenCV if the user didn't choose the option --no-animation show_animation = False if not args.no_animation: try: import cv2 show_animation = True except ImportError: print("\"opencv-python\" not found, please install to visualize the results.") args.no_animation = True # try to import Matplotlib if the user didn't choose the option --no-plot draw_plot = False if not args.no_plot: try: import matplotlib.pyplot as plt draw_plot = True except ImportError: print("\"matplotlib\" not found, please install it to get the resulting plots.") args.no_plot = True def log_average_miss_rate(prec, rec, num_images): """ log-average miss rate: Calculated by averaging miss rates at 9 evenly spaced FPPI points between 10e-2 and 10e0, in log-space. output: lamr | log-average miss rate mr | miss rate fppi | false positives per image references: [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the State of the Art." Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.4 (2012): 743 - 761. """ # if there were no detections of that class if prec.size == 0: lamr = 0 mr = 1 fppi = 0 return lamr, mr, fppi fppi = (1 - prec) mr = (1 - rec) fppi_tmp = np.insert(fppi, 0, -1.0) mr_tmp = np.insert(mr, 0, 1.0) # Use 9 evenly spaced reference points in log-space ref = np.logspace(-2.0, 0.0, num = 9) for i, ref_i in enumerate(ref): # np.where() will always find at least 1 index, since min(ref) = 0.01 and min(fppi_tmp) = -1.0 j = np.where(fppi_tmp <= ref_i)[-1][-1] ref[i] = mr_tmp[j] # log(0) is undefined, so we use the np.maximum(1e-10, ref) lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref)))) return lamr, mr, fppi """ throw error and exit """ def error(msg): print(msg) sys.exit(0) """ check if the number is a float between 0.0 and 1.0 """ def is_float_between_0_and_1(value): try: val = float(value) if val > 0.0 and val < 1.0: return True else: return False except ValueError: return False """ Calculate the AP given the recall and precision array 1st) We compute a version of the measured precision/recall curve with precision monotonically decreasing 2nd) We compute the AP as the area under this curve by numerical integration. """ def voc_ap(rec, prec): """ --- Official matlab code VOC2012--- mrec=[0 ; rec ; 1]; mpre=[0 ; prec ; 0]; for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); end i=find(mrec(2:end)~=mrec(1:end-1))+1; ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ rec.insert(0, 0.0) # insert 0.0 at begining of list rec.append(1.0) # insert 1.0 at end of list mrec = rec[:] prec.insert(0, 0.0) # insert 0.0 at begining of list prec.append(0.0) # insert 0.0 at end of list mpre = prec[:] """ This part makes the precision monotonically decreasing (goes from the end to the beginning) matlab: for i=numel(mpre)-1:-1:1 mpre(i)=max(mpre(i),mpre(i+1)); """ # matlab indexes start in 1 but python in 0, so I have to do: # range(start=(len(mpre) - 2), end=0, step=-1) # also the python function range excludes the end, resulting in: # range(start=(len(mpre) - 2), end=-1, step=-1) for i in range(len(mpre)-2, -1, -1): mpre[i] = max(mpre[i], mpre[i+1]) """ This part creates a list of indexes where the recall changes matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1; """ i_list = [] for i in range(1, len(mrec)): if mrec[i] != mrec[i-1]: i_list.append(i) # if it was matlab would be i + 1 """ The Average Precision (AP) is the area under the curve (numerical integration) matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); """ ap = 0.0 for i in i_list: ap += ((mrec[i]-mrec[i-1])*mpre[i]) return ap, mrec, mpre """ Convert the lines of a file to a list """ def file_lines_to_list(path): # open txt file lines to a list with open(path) as f: content = f.readlines() # remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] return content """ Draws text in image """ def draw_text_in_image(img, text, pos, color, line_width): font = cv2.FONT_HERSHEY_PLAIN fontScale = 1 lineType = 1 bottomLeftCornerOfText = pos cv2.putText(img, text, bottomLeftCornerOfText, font, fontScale, color, lineType) text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0] return img, (line_width + text_width) """ Plot - adjust axes """ def adjust_axes(r, t, fig, axes): # get text width for re-scaling bb = t.get_window_extent(renderer=r) text_width_inches = bb.width / fig.dpi # get axis width in inches current_fig_width = fig.get_figwidth() new_fig_width = current_fig_width + text_width_inches propotion = new_fig_width / current_fig_width # get axis limit x_lim = axes.get_xlim() axes.set_xlim([x_lim[0], x_lim[1]*propotion]) """ Draw plot using Matplotlib """ def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar): # sort the dictionary by decreasing value, into a list of tuples sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1)) # unpacking the list of tuples into two lists sorted_keys, sorted_values = zip(*sorted_dic_by_value) # if true_p_bar != "": """ Special case to draw in: - green -> TP: True Positives (object detected and matches ground-truth) - red -> FP: False Positives (object detected but does not match ground-truth) - pink -> FN: False Negatives (object not detected but present in the ground-truth) """ fp_sorted = [] tp_sorted = [] for key in sorted_keys: fp_sorted.append(dictionary[key] - true_p_bar[key]) tp_sorted.append(true_p_bar[key]) plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive') plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted) # add legend plt.legend(loc='lower right') """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): fp_val = fp_sorted[i] tp_val = tp_sorted[i] fp_str_val = " " + str(fp_val) tp_str_val = fp_str_val + " " + str(tp_val) # trick to paint multicolor with offset: # first paint everything and then repaint the first number t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold') plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold') if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) else: plt.barh(range(n_classes), sorted_values, color=plot_color) """ Write number on side of bar """ fig = plt.gcf() # gcf - get current figure axes = plt.gca() r = fig.canvas.get_renderer() for i, val in enumerate(sorted_values): str_val = " " + str(val) # add a space before if val < 1.0: str_val = " {0:.2f}".format(val) t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold') # re-set axes to show number inside the figure if i == (len(sorted_values)-1): # largest bar adjust_axes(r, t, fig, axes) # set window title fig.canvas.manager.set_window_title(window_title) # write classes in y axis tick_font_size = 12 plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size) """ Re-scale height accordingly """ init_height = fig.get_figheight() # comput the matrix height in points and inches dpi = fig.dpi height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing) height_in = height_pt / dpi # compute the required figure height top_margin = 0.15 # in percentage of the figure height bottom_margin = 0.05 # in percentage of the figure height figure_height = height_in / (1 - top_margin - bottom_margin) # set new height if figure_height > init_height: fig.set_figheight(figure_height) # set plot title plt.title(plot_title, fontsize=14) # set axis titles # plt.xlabel('classes') plt.xlabel(x_label, fontsize='large') # adjust size of window fig.tight_layout() # save the plot fig.savefig(output_path) # show image if to_show: plt.show() # close the plot plt.close() """ Create a ".temp_files/" and "output/" directory """ TEMP_FILES_PATH = os.path.join(args.path, ".temp_files") if not os.path.exists(TEMP_FILES_PATH): # if it doesn't exist already os.makedirs(TEMP_FILES_PATH) output_files_path = os.path.join(args.path, "mAP_output") if os.path.exists(output_files_path): # if it exist already # reset the output directory shutil.rmtree(output_files_path) os.makedirs(output_files_path) if draw_plot: os.makedirs(os.path.join(output_files_path, "classes")) if show_animation: os.makedirs(os.path.join(output_files_path, "images", "detections_one_by_one")) """ ground-truth Load each of the ground-truth files into a temporary ".json" file. Create a list of all the class names present in the ground-truth (gt_classes). """ # get a list with the ground-truth files ground_truth_files_list = glob.glob(GT_PATH + '/*.txt') if len(ground_truth_files_list) == 0: error("Error: No ground-truth files found!") ground_truth_files_list.sort() # dictionary with counter per class gt_counter_per_class = {} counter_images_per_class = {} gt_files = [] for txt_file in ground_truth_files_list: #print(txt_file) file_id = txt_file.split(".txt", 1)[0] file_id = os.path.basename(os.path.normpath(file_id)) # check if there is a correspondent detection-results file temp_path = os.path.join(DR_PATH, (file_id + ".txt")) if not os.path.exists(temp_path): error_msg = "Error. File not found: {}\n".format(temp_path) error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)" error(error_msg) lines_list = file_lines_to_list(txt_file) # create ground-truth dictionary bounding_boxes = [] is_difficult = False already_seen_classes = [] for line in lines_list: try: if "difficult" in line: class_name, left, top, right, bottom, _difficult = line.split() is_difficult = True else: class_name, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: ['difficult']\n" error_msg += " Received: " + line error_msg += "\n\nIf you have a with spaces between words you should remove them\n" error_msg += "by running the script \"remove_space.py\" or \"rename_class.py\" in the \"extra/\" folder." error(error_msg) # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue bbox = left + " " + top + " " + right + " " +bottom if is_difficult: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True}) is_difficult = False else: bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False}) # count that object if class_name in gt_counter_per_class: gt_counter_per_class[class_name] += 1 else: # if class didn't exist yet gt_counter_per_class[class_name] = 1 if class_name not in already_seen_classes: if class_name in counter_images_per_class: counter_images_per_class[class_name] += 1 else: # if class didn't exist yet counter_images_per_class[class_name] = 1 already_seen_classes.append(class_name) # dump bounding_boxes into a ".json" file new_temp_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" gt_files.append(new_temp_file) with open(new_temp_file, 'w') as outfile: json.dump(bounding_boxes, outfile) gt_classes = list(gt_counter_per_class.keys()) # let's sort the classes alphabetically gt_classes = sorted(gt_classes) n_classes = len(gt_classes) #print(gt_classes) #print(gt_counter_per_class) """ Check format of the flag --set-class-iou (if used) e.g. check if class exists """ if specific_iou_flagged: n_args = len(args.set_class_iou) error_msg = \ '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]' if n_args % 2 != 0: error('Error, missing arguments. Flag usage:' + error_msg) # [class_1] [IoU_1] [class_2] [IoU_2] # specific_iou_classes = ['class_1', 'class_2'] specific_iou_classes = args.set_class_iou[::2] # even # iou_list = ['IoU_1', 'IoU_2'] iou_list = args.set_class_iou[1::2] # odd if len(specific_iou_classes) != len(iou_list): error('Error, missing arguments. Flag usage:' + error_msg) for tmp_class in specific_iou_classes: if tmp_class not in gt_classes: error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg) for num in iou_list: if not is_float_between_0_and_1(num): error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg) """ detection-results Load each of the detection-results files into a temporary ".json" file. """ # get a list with the detection-results files dr_files_list = glob.glob(DR_PATH + '/*.txt') dr_files_list.sort() for class_index, class_name in enumerate(gt_classes): bounding_boxes = [] for txt_file in dr_files_list: #print(txt_file) # the first time it checks if all the corresponding ground-truth files exist file_id = txt_file.split(".txt",1)[0] file_id = os.path.basename(os.path.normpath(file_id)) temp_path = os.path.join(GT_PATH, (file_id + ".txt")) if class_index == 0: if not os.path.exists(temp_path): error_msg = "Error. File not found: {}\n".format(temp_path) error_msg += "(You can avoid this error message by running extra/intersect-gt-and-dr.py)" error(error_msg) lines = file_lines_to_list(txt_file) for line in lines: try: tmp_class_name, confidence, left, top, right, bottom = line.split() except ValueError: error_msg = "Error: File " + txt_file + " in the wrong format.\n" error_msg += " Expected: \n" error_msg += " Received: " + line error(error_msg) if tmp_class_name == class_name: #print("match") bbox = left + " " + top + " " + right + " " +bottom bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox}) #print(bounding_boxes) # sort detection-results by decreasing confidence bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True) with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile: json.dump(bounding_boxes, outfile) """ Calculate the AP for each class """ sum_AP = 0.0 ap_dictionary = {} lamr_dictionary = {} # open file to store the output with open(output_files_path + "/output.txt", 'w') as output_file: output_file.write("# AP and precision/recall per class\n") count_true_positives = {} for class_index, class_name in enumerate(gt_classes): count_true_positives[class_name] = 0 """ Load detection-results of that class """ dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json" dr_data = json.load(open(dr_file)) """ Assign detection-results to ground-truth objects """ nd = len(dr_data) tp = [0] * nd # creates an array of zeros of size nd fp = [0] * nd for idx, detection in enumerate(dr_data): file_id = detection["file_id"] if show_animation: # find ground truth image ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*") #tifCounter = len(glob.glob1(myPath,"*.tif")) if len(ground_truth_img) == 0: error("Error. Image not found with id: " + file_id) elif len(ground_truth_img) > 1: error("Error. Multiple image with id: " + file_id) else: # found image #print(IMG_PATH + "/" + ground_truth_img[0]) # Load image img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0]) # load image with draws of multiple detections img_cumulative_path = output_files_path + "/images/" + ground_truth_img[0] if os.path.isfile(img_cumulative_path): img_cumulative = cv2.imread(img_cumulative_path) else: img_cumulative = img.copy() # Add bottom border to image bottom_border = 60 BLACK = [0, 0, 0] img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK) # assign detection-results to ground truth object if any # open ground-truth with that file_id gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" ground_truth_data = json.load(open(gt_file)) ovmax = -1 gt_match = -1 # load detected object bounding-box bb = [ float(x) for x in detection["bbox"].split() ] for obj in ground_truth_data: # look for a class_name match if obj["class_name"] == class_name: bbgt = [ float(x) for x in obj["bbox"].split() ] bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])] iw = bi[2] - bi[0] + 1 ih = bi[3] - bi[1] + 1 if iw > 0 and ih > 0: # compute overlap (IoU) = area of intersection / area of union ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0] + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih ov = iw * ih / ua if ov > ovmax: ovmax = ov gt_match = obj # assign detection as true positive/don't care/false positive if show_animation: status = "NO MATCH FOUND!" # status is only used in the animation # set minimum overlap min_overlap = MINOVERLAP if specific_iou_flagged: if class_name in specific_iou_classes: index = specific_iou_classes.index(class_name) min_overlap = float(iou_list[index]) if ovmax >= min_overlap: if "difficult" not in gt_match: if not bool(gt_match["used"]): # true positive tp[idx] = 1 gt_match["used"] = True count_true_positives[class_name] += 1 # update the ".json" file with open(gt_file, 'w') as f: f.write(json.dumps(ground_truth_data)) if show_animation: status = "MATCH!" else: # false positive (multiple detection) fp[idx] = 1 if show_animation: status = "REPEATED MATCH!" else: # false positive fp[idx] = 1 if ovmax > 0: status = "INSUFFICIENT OVERLAP" """ Draw image to show animation """ if show_animation: height, widht = img.shape[:2] # colors (OpenCV works with BGR) white = (255,255,255) light_blue = (255,200,100) green = (0,255,0) light_red = (30,30,255) # 1st line margin = 10 v_pos = int(height - margin - (bottom_border / 2.0)) text = "Image: " + ground_truth_img[0] + " " img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width) if ovmax != -1: color = light_red if status == "INSUFFICIENT OVERLAP": text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100) else: text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100) color = green img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) # 2nd line v_pos += int(bottom_border / 2.0) rank_pos = str(idx+1) # rank position (idx starts at 0) text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100) img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) color = light_red if status == "MATCH!": color = green text = "Result: " + status + " " img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) font = cv2.FONT_HERSHEY_SIMPLEX if ovmax > 0: # if there is intersections between the bounding-boxes bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ] cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA) bb = [int(i) for i in bb] cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2) cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2) cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA) # show image cv2.imshow("Animation", img) cv2.waitKey(20) # show for 20 ms # save image to output output_img_path = output_files_path + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg" cv2.imwrite(output_img_path, img) # save the image with all the objects drawn to it cv2.imwrite(img_cumulative_path, img_cumulative) #print(tp) # compute precision/recall cumsum = 0 for idx, val in enumerate(fp): fp[idx] += cumsum cumsum += val cumsum = 0 for idx, val in enumerate(tp): tp[idx] += cumsum cumsum += val #print(tp) rec = tp[:] for idx, val in enumerate(tp): rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name] #print(rec) prec = tp[:] for idx, val in enumerate(tp): prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx]) #print(prec) ap, mrec, mprec = voc_ap(rec[:], prec[:]) sum_AP += ap text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100) """ Write to output.txt """ rounded_prec = [ '%.2f' % elem for elem in prec ] rounded_rec = [ '%.2f' % elem for elem in rec ] output_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n") if not args.quiet: print(text) ap_dictionary[class_name] = ap n_images = counter_images_per_class[class_name] lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images) lamr_dictionary[class_name] = lamr """ Draw plot """ if draw_plot: plt.plot(rec, prec, '-o') # add a new penultimate point to the list (mrec[-2], 0.0) # since the last line segment (and respective area) do not affect the AP value area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') # set window title fig = plt.gcf() # gcf - get current figure fig.canvas.manager.set_window_title('AP ' + class_name) # set plot title plt.title('class: ' + text) #plt.suptitle('This is a somewhat long figure title', fontsize=16) # set axis titles plt.xlabel('Recall') plt.ylabel('Precision') # optional - set axes axes = plt.gca() # gca - get current axes axes.set_xlim([0.0,1.0]) axes.set_ylim([0.0,1.05]) # .05 to give some extra space # Alternative option -> wait for button to be pressed #while not plt.waitforbuttonpress(): pass # wait for key display # Alternative option -> normal display #plt.show() # save the plot fig.savefig(output_files_path + "/classes/" + class_name + ".png") plt.cla() # clear axes for next plot if show_animation: cv2.destroyAllWindows() output_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {0:.2f}%".format(mAP*100) output_file.write(text + "\n") print(text) """ Draw false negatives """ if show_animation: pink = (203,192,255) for tmp_file in gt_files: ground_truth_data = json.load(open(tmp_file)) #print(ground_truth_data) # get name of corresponding image start = TEMP_FILES_PATH + '/' img_id = tmp_file[tmp_file.find(start)+len(start):tmp_file.rfind('_ground_truth.json')] img_cumulative_path = output_files_path + "/images/" + img_id + ".jpg" img = cv2.imread(img_cumulative_path) if img is None: img_path = IMG_PATH + '/' + img_id + ".jpg" img = cv2.imread(img_path) # draw false negatives for obj in ground_truth_data: if not obj['used']: bbgt = [ int(round(float(x))) for x in obj["bbox"].split() ] cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),pink,2) cv2.imwrite(img_cumulative_path, img) # remove the temp_files directory shutil.rmtree(TEMP_FILES_PATH) """ Count total of detection-results """ # iterate through all the files det_counter_per_class = {} for txt_file in dr_files_list: # get lines to list lines_list = file_lines_to_list(txt_file) for line in lines_list: class_name = line.split()[0] # check if class is in the ignore list, if yes skip if class_name in args.ignore: continue # count that object if class_name in det_counter_per_class: det_counter_per_class[class_name] += 1 else: # if class didn't exist yet det_counter_per_class[class_name] = 1 #print(det_counter_per_class) dr_classes = list(det_counter_per_class.keys()) """ Plot the total number of occurences of each class in the ground-truth """ if draw_plot: window_title = "ground-truth-info" plot_title = "ground-truth\n" plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" x_label = "Number of objects per class" output_path = output_files_path + "/ground-truth-info.png" to_show = False plot_color = 'forestgreen' draw_plot_func( gt_counter_per_class, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, '', ) """ Write number of ground-truth objects per class to results.txt """ with open(output_files_path + "/output.txt", 'a') as output_file: output_file.write("\n# Number of ground-truth objects per class\n") for class_name in sorted(gt_counter_per_class): output_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n") """ Finish counting true positives """ for class_name in dr_classes: # if class exists in detection-result but not in ground-truth then there are no true positives in that class if class_name not in gt_classes: count_true_positives[class_name] = 0 #print(count_true_positives) """ Plot the total number of occurences of each class in the "detection-results" folder """ if draw_plot: window_title = "detection-results-info" # Plot title plot_title = "detection-results\n" plot_title += "(" + str(len(dr_files_list)) + " files and " count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values())) plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" # end Plot title x_label = "Number of objects per class" output_path = output_files_path + "/detection-results-info.png" to_show = False plot_color = 'forestgreen' true_p_bar = count_true_positives draw_plot_func( det_counter_per_class, len(det_counter_per_class), window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar ) """ Write number of detected objects per class to output.txt """ with open(output_files_path + "/output.txt", 'a') as output_file: output_file.write("\n# Number of detected objects per class\n") for class_name in sorted(dr_classes): n_det = det_counter_per_class[class_name] text = class_name + ": " + str(n_det) text += " (tp:" + str(count_true_positives[class_name]) + "" text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n" output_file.write(text) """ Draw log-average miss rate plot (Show lamr of all classes in decreasing order) """ if draw_plot: window_title = "lamr" plot_title = "log-average miss rate" x_label = "log-average miss rate" output_path = output_files_path + "/lamr.png" to_show = False plot_color = 'royalblue' draw_plot_func( lamr_dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, "" ) """ Draw mAP plot (Show AP's of all classes in decreasing order) """ if draw_plot: window_title = "mAP" plot_title = "mAP = {0:.2f}%".format(mAP*100) x_label = "Average Precision" output_path = output_files_path + "/mAP.png" to_show = True plot_color = 'royalblue' draw_plot_func( ap_dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, "" )