import numpy as np import cv2 from matplotlib import pyplot as plt import torch def data_visualizer(img, idx_to_class, path, bbox=None, pred=None): """ Data visualizer on the original image. Support both GT box input and proposal input. Input: - img: PIL Image input - idx_to_class: Mapping from the index (0-19) to the class name - bbox: GT bbox (in red, optional), a tensor of shape Nx5, where N is the number of GT boxes, 5 indicates (x_tl, y_tl, x_br, y_br, class) - pred: Predicted bbox (in green, optional), a tensor of shape N'x6, where N' is the number of predicted boxes, 6 indicates (x_tl, y_tl, x_br, y_br, class, object confidence score) """ img_copy = np.array(img).astype('uint8') if bbox is not None: for bbox_idx in range(bbox.shape[0]): one_bbox = bbox[bbox_idx][:4].numpy().astype('int') cv2.rectangle(img_copy, (one_bbox[0], one_bbox[1]), (one_bbox[2], one_bbox[3]), (255, 0, 0), 2) if bbox.shape[1] > 4: # if class info provided obj_cls = idx_to_class[bbox[bbox_idx][4].item()] cv2.putText(img_copy, '%s' % (obj_cls), (one_bbox[0], one_bbox[1]+15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) if pred is not None: for bbox_idx in range(pred.shape[0]): one_bbox = pred[bbox_idx][:4].numpy().astype('int') cv2.rectangle(img_copy, (one_bbox[0], one_bbox[1]), (one_bbox[2], one_bbox[3]), (0, 255, 0), 2) if pred.shape[1] > 4: # if class and conf score info provided obj_cls = idx_to_class[pred[bbox_idx][4].item()] conf_score = pred[bbox_idx][5].item() cv2.putText(img_copy, '%s, %.2f' % (obj_cls, conf_score), (one_bbox[0], one_bbox[1]+15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) plt.imshow(img_copy) plt.axis('off') plt.title(path) plt.savefig(path) plt.close() def coord_trans(bbox, bbox_batch_idx, w_pixel, h_pixel, w_amap=7, h_amap=7, mode='a2p'): """ Coordinate transformation function. It converts the box coordinate from the image coordinate system to the activation map coordinate system and vice versa. In our case, the input image will have a few hundred of pixels in width/height while the activation map is of size 7x7. Input: - bbox: Could be either bbox, anchor, or proposal, of shape Mx4 - bbox_batch_idx: Index of the image that each bbox belongs to, of shape M - w_pixel: Number of pixels in the width side of the original image, of shape B - h_pixel: Number of pixels in the height side of the original image, of shape B - w_amap: Number of pixels in the width side of the activation map, scalar - h_amap: Number of pixels in the height side of the activation map, scalar - mode: Whether transfer from the original image to activation map ('p2a') or the opposite ('a2p') Output: - resized_bbox: Resized box coordinates, of the same shape as the input bbox """ assert mode in ('p2a', 'a2p'), 'invalid coordinate transformation mode!' assert bbox.shape[-1] >= 4, 'the transformation is applied to the first 4 values of dim -1' if bbox.shape[0] == 0: # corner cases return bbox resized_bbox = bbox.clone() if mode == 'p2a': # pixel to activation width_ratio = w_pixel[bbox_batch_idx] * 1. / w_amap height_ratio = h_pixel[bbox_batch_idx] * 1. / h_amap resized_bbox[:, [0, 2]] /= width_ratio.view(-1, 1) resized_bbox[:, [1, 3]] /= height_ratio.view(-1, 1) else: # activation to pixel width_ratio = w_pixel[bbox_batch_idx] * 1. / w_amap height_ratio = h_pixel[bbox_batch_idx] * 1. / h_amap resized_bbox[:, [0, 2]] *= width_ratio.view(-1, 1) resized_bbox[:, [1, 3]] *= height_ratio.view(-1, 1) return resized_bbox def generate_anchor(anc_per_grid, grid): """ Anchor generator. Inputs: - anc_per_grid: Tensor of shape (A, 2) giving the shapes of anchor boxes to consider at each point in the grid. anc_per_grid[a] = (w, h) gives the width and height of the a'th anchor shape. - grid: Tensor of shape (B, H', W', 2) giving the (x, y) coordinates of the center of each feature from the backbone feature map. This is the tensor returned from GenerateGrid. Outputs: - anchors: Tensor of shape (B, A, H', W', 4) giving the positions of all anchor boxes for the entire image. anchors[b, a, h, w] is an anchor box centered at grid[b, h, w], whose shape is given by anc[a]; we parameterize boxes as anchors[b, a, h, w] = (x_tl, y_tl, x_br, y_br), where (x_tl, y_tl) and (x_br, y_br) give the xy coordinates of the top-left and bottom-right corners of the box. """ A, _ = anc_per_grid.shape B, H, W, _ = grid.shape anc_per_grid = anc_per_grid.to(grid) anc_per_grid = anc_per_grid.view(1, A, 1, 1, -1).repeat(B, 1, H, W, 1) grid = grid.view(B, 1, H, W, -1).repeat(1, A, 1, 1, 1) x1y1 = grid - anc_per_grid / 2 x2y2 = grid + anc_per_grid / 2 anchors = torch.cat([x1y1, x2y2], dim=-1) return anchors def compute_iou(anchors, bboxes): """ Compute the intersection-over-union between anchors and gts. Inputs: - anchors: Anchor boxes, of shape (M, 4), where M is the number of proposals - bboxes: GT boxes of shape (N, 4), where N is the number of GT boxes, 4 indicates (x_{lr}^{gt}, y_{lr}^{gt}, x_{rb}^{gt}, y_{rb}^{gt}) Outputs: - iou: IoU matrix of shape (M, N) """ iou = None ############################################################################## # TODO: Given anchors and gt bboxes, # # compute the iou between each anchor and gt bbox. # ############################################################################## M = anchors.shape[0] N = bboxes.shape[0] # Extract the coordinates of the anchors and bboxes # Expand dimensions to compute pairwise IoU anchors = anchors.reshape(M, 1, 4) bboxes = bboxes.reshape(1, N, 4) #extract (x,y) of left_down and right_up points x1_a, y1_a, x2_a, y2_a = anchors[:,:, 0], anchors[:,:, 1], anchors[:,:, 2], anchors[:,:, 3] x1_b, y1_b, x2_b, y2_b = bboxes[:,:, 0], bboxes[:,:, 1], bboxes[:,:, 2], bboxes[:,:, 3] # Compute the intersection coordinates inter_x1 = torch.max(x1_a, x1_b) inter_y1 = torch.max(y1_a, y1_b) inter_x2 = torch.min(x2_a, x2_b) inter_y2 = torch.min(y2_a, y2_b) # Compute the intersection area inter_area = torch.clamp(inter_x2 - inter_x1,min=0) * torch.clamp(inter_y2 - inter_y1,min=0) # Compute the area of anchors and bboxes anchor_area = (x2_a - x1_a) * (y2_a - y1_a) # Shape (M, 1) bbox_area = (x2_b - x1_b) * (y2_b - y1_b) # Shape (1, N) # Compute the union area union_area = anchor_area + bbox_area - inter_area # Compute IoU iou = inter_area / union_area ############################################################################## # END OF YOUR CODE # ############################################################################## return iou def compute_offsets(anchors, bboxes): """ Compute the offsets between anchors and gts. Inputs: - anchors: Anchor boxes, of shape (M, 4) - bboxes: GT boxes of shape (M, 4), 4 indicates (x_{lr}^{gt}, y_{lr}^{gt}, x_{rb}^{gt}, y_{rb}^{gt}) Outputs: - offsets: offsets of shape (M, 4) """ wh_offsets = torch.log((bboxes[:, 2:4] - bboxes[:, :2]) \ / (anchors[:, 2:4] - anchors[:, :2])) xy_offsets = (bboxes[:, :2] + bboxes[:, 2:4] - \ anchors[:, :2] - anchors[:, 2:4]) / 2. xy_offsets /= (anchors[:, 2:4] - anchors[:, :2]) offsets = torch.cat((xy_offsets, wh_offsets), dim=-1) return offsets def generate_proposal(anchors, offsets): """ Proposal generator. Inputs: - anchors: Anchor boxes, of shape (M, 4). Anchors are represented by the coordinates of their top-left and bottom-right corners. - offsets: Transformations of shape (M, 4) that will be used to convert anchor boxes into region proposals. The transformation offsets[m] = (tx, ty, tw, th) will be applied to the anchor anchors[m]. Outputs: - proposals: Region proposals of shape (M, 4), represented by the coordinates of their top-left and bottom-right corners. Applying the transform offsets[m] to the anchor[m] should give the proposal proposals[m]. """ proposals = None ############################################################################## # TODO: Given anchor coordinates and the proposed offset for each anchor, # # compute the proposal coordinates using the transformation formulas above. # ############################################################################## # Replace "pass" statement with your code x1, y1, x2, y2 =anchors[:, 0], anchors[:, 1], anchors[:, 2], anchors[:, 3] pw = x2 - x1 ph = y2 - y1 px = x1 + 0.5 * pw py = y1 + 0.5 * ph tx, ty, tw, th = offsets[:, 0], offsets[:, 1], offsets[:, 2], offsets[:, 3] proposal_x = px + tx * pw proposal_y = py + ty * ph proposal_w = pw * torch.exp(tw) proposal_h = ph * torch.exp(th) proposal_x1 = proposal_x - 0.5 * proposal_w proposal_y1 = proposal_y - 0.5 * proposal_h proposal_x2 = proposal_x + 0.5 * proposal_w proposal_y2 = proposal_y + 0.5 * proposal_h proposals = torch.stack((proposal_x1, proposal_y1, proposal_x2, proposal_y2),dim=1) ############################################################################## # END OF YOUR CODE # ############################################################################## return proposals @torch.no_grad() def assign_label(proposals, bboxes, background_id, pos_thresh=0.5, neg_thresh=0.5, pos_fraction=0.25): """ Determine the activated (positive) and negative proposals for model training. For Fast R-CNN - Positive proposals are defined Any of the two (i) the proposal/proposals with the highest IoU overlap with a GT box, or (ii) a proposal that has an IoU overlap higher than positive threshold with any GT box. Note: One proposal can match at most one GT box (the one with the largest IoU overlapping). We assign a negative label to a proposal if its IoU ratio is lower than a threshold value for all GT boxes. Proposals that are neither positive nor negative do not contribute to the training objective. Main steps include: i) Decide activated and negative proposals based on the IoU matrix. ii) Compute GT confidence score/offsets/object class on the positive proposals. iii) Compute GT confidence score on the negative proposals. Inputs: - proposal: Proposal boxes, of shape (M, 4), where M is the number of proposals - bboxes: GT boxes of shape Nx5, where N is the number of GT boxes, 5 indicates (x_{lr}^{gt}, y_{lr}^{gt}, x_{rb}^{gt}, y_{rb}^{gt}) and class index - background_id: Class id of the background class - pos_thresh: Positive threshold value - neg_thresh: Negative threshold value - pos_fraction: a factor balancing pos/neg proposals Outputs: - activated_anc_mask: a binary mask indicating the activated proposals, of shape M - negative_anc_mask: a binary mask indicating the negative proposals, of shape M - GT_class: GT class category on all proposals, background class for non-activated proposals, of shape M - bboxes: GT bboxes on activated proposals, of shape M'x4, where M' is the number of activated proposals """ M = proposals.shape[0] N = bboxes.shape[0] iou_mat = compute_iou(proposals, bboxes[:, :4]) # activated/positive proposals max_iou_per_anc, max_iou_per_anc_ind = iou_mat.max(dim=-1) max_iou_per_box = iou_mat.max(dim=0, keepdim=True)[0] activated_anc_mask = (iou_mat == max_iou_per_box) & (max_iou_per_box > 0) activated_anc_mask |= (iou_mat > pos_thresh) # using the pos_thresh condition as well activated_anc_mask = activated_anc_mask.max(dim=-1)[0] # (M, ) activated_anc_ind = torch.nonzero(activated_anc_mask.view(-1)).squeeze(-1) # GT class box_cls = bboxes[:, 4].long().view(1, N).expand(M, N) # if a proposal matches multiple GT boxes, choose the box with the largest iou GT_class = torch.gather(box_cls, -1, max_iou_per_anc_ind.unsqueeze(-1)).squeeze(-1) # M GT_class[~activated_anc_mask] = background_id # GT bboxes bboxes_expand = bboxes[:, :4].view(1, N, 4).expand((M, N, 4)) bboxes = torch.gather(bboxes_expand, -2, max_iou_per_anc_ind.unsqueeze(-1) \ .unsqueeze(-1).expand(M, 1, 4)).view(M, 4) bboxes = bboxes[activated_anc_ind] # negative anchors negative_anc_mask = (max_iou_per_anc < neg_thresh) negative_anc_ind = torch.nonzero(negative_anc_mask.view(-1)).squeeze(-1) # balance pos/neg anchors, random choose num_neg = int(activated_anc_ind.shape[0] * (1 - pos_fraction) / pos_fraction) negative_anc_ind = negative_anc_ind[torch.randint(0, negative_anc_ind.shape[0], (num_neg,))] negative_anc_mask = torch.zeros_like(negative_anc_mask) negative_anc_mask[negative_anc_ind] = 1 return activated_anc_mask, negative_anc_mask, GT_class, bboxes