import os import json import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from datetime import datetime num_runs = 100 dict_of_dict_of_lists = dict() graph_repo="data" os.makedirs(graph_repo, exist_ok=True) fancy_num_runs = range(0, num_runs, 1) for run_id in tqdm(fancy_num_runs): filename = graph_repo+"/run"+str(run_id)+".json" with open(filename) as f: dict_of_dict_of_lists[run_id] = json.load(f) l1_all = [] l2_all = [] l3_all = [] mem_all = [] for run_id in tqdm(fancy_num_runs): l1_all += dict_of_dict_of_lists[run_id]['1'] l2_all += dict_of_dict_of_lists[run_id]['2'] l3_all += dict_of_dict_of_lists[run_id]['3'] mem_all += dict_of_dict_of_lists[run_id]['4'] # # MAX 300 # fig_all = plt.figure(figsize=(11.25, 7.5)) ax_all = fig_all.add_subplot(1,1,1) ax_all.set_xlabel("Access Time") ax_all.set_ylabel("Number of Samples") ax_all.hist(l1_all, label="L1", bins=np.arange(0, 300 ), alpha=0.5) ax_all.hist(l2_all, label="L2", bins=np.arange(0, 300 ), alpha=0.5) ax_all.hist(l3_all, label="L3", bins=np.arange(0, 300 ), alpha=0.5) ax_all.hist(mem_all, label="DRAM", bins=np.arange(0, 300 ), alpha=0.5) fig_all.legend() os.makedirs("graphs", exist_ok=True) now = datetime.now() date_time = now.strftime("%m:%d:%Y_%H:%M:%S") fig_all.savefig(str("graphs/"+date_time+".pdf")) plt.close(fig_all)